PROBLEMS INVOLVING CHARACTERS AND TWO PRIMES

Carolina Vallejo Rodríguez

Universidad Carlos III de Madrid - Instituto de Ciencias Matemáticas de Madrid Algebra Seminar, University of Machester *G* finite group, Irr(G) irreducible complex characters of *G*. Lin(*G*) = { $\chi \in Irr(G) \mid \chi(1) = 1$ } $\cong G/G'$, G' = [G, G].

FACTS (DEGREES)

- $\chi(1)$ divides |G| for $\chi \in \mathrm{Irr}(G)$.
- $\sum_{\chi \in \operatorname{Irr}(G)} \chi(1)^2 = |G|.$

For a prime p, we write $\operatorname{Irr}_{p'}(G) = \{\chi \in \operatorname{Irr}(G) \mid (\chi(1), p) = 1\} \supseteq \operatorname{Lin}(G) \ni \mathbf{1}_G$.

AN ELEMENTARY FACT

• $\operatorname{Irr}_{p'}(G) = \{\mathbf{1}_G\}$ if, and only if, G = 1.

Proof. $\operatorname{Irr}_{p'}(G) = \{\mathbf{1}_G\}$ implies that $|G| = 1 + p^2m$ then (|G|, p) = 1 and $\{\mathbf{1}_G\} = \operatorname{Irr}_{p'}(G) = \operatorname{Irr}(G)$.

By Tate's transfer theory the theorem above can be restated.

Theorem (Thompson '70, Gow-Humphreys '75)

$$\operatorname{Irr}_{p'}(G) = \operatorname{Lin}(G) \iff \mathsf{N}_G(P) \cap G' = P',$$
$$P \in \operatorname{Syl}_p(G).$$

Theorem (Thompson '70, Gow-Humphreys '75)

$$\operatorname{Irr}_{p'}(G) = \operatorname{Lin}(G) \iff \mathsf{N}_G(P) \cap G' = P',$$
$$P \in \operatorname{Syl}_p(G).$$

From now on $\pi = \{p, q\}$ and

$$\operatorname{Irr}_{\pi'}(G) = \operatorname{Irr}_{\rho'}(G) \cap \operatorname{Irr}_{q'}(G) \supseteq \operatorname{Lin}(G).$$

Objective. Characterize $Irr_{\pi'}(G) = Lin(G)$ for all finite groups.

Theorem (Navarro-Wolf '02)

G solvable, $\pi = \{p, q\}$ and $H \in \operatorname{Hall}_{\pi}(G)$. $\operatorname{Irr}_{\pi'}(G) = \operatorname{Lin}(G) \iff \mathsf{N}_{G}(H) \cap G' = H',$ $H \in \operatorname{Hall}_{\pi}(G).$

Example. $Irr_{\{2,5\}'}(S_5) = Lin(S_5)$ but $Hall_{\{2,5\}}(S_5) = \emptyset$.

Objective. Characterize $Irr_{\pi'}(G) = Lin(G)$ for all finite groups.

We first analyze the much stronger condition $Irr_{\pi'}(G) = \{\mathbf{1}_G\}$.

Theorem A (Giannelli-Schaeffer Fry-V. '19) G group and $\pi = \{p, q\}$. $\operatorname{Irr}_{\pi'}(G) = \{\mathbf{1}_G\}$ if, and only if, G = 1.

Remark. Unlike the case $|\pi| = 1$, our proof relies on the Classification of Finite Simple Groups.

Objective. Characterize $Irr_{\pi'}(G) = Lin(G)$ for all finite groups.

Theorem B (Giannelli-Schaeffer Fry-V. '19) *G* group, $\pi = \{p, q\}$, *M* the solvable residual of *G* and $H/M \in \operatorname{Hall}_{\pi}(G/M)$. $\operatorname{Irr}_{\pi'}(G) = \operatorname{Lin}(G) \iff \begin{cases} \mathsf{N}_{G}(H)/M \cap G'/M = H'/M, \text{ and} \\ H \text{ acts on } \operatorname{Irr}_{\pi'}(M) \text{ with fixed points } \{\mathbf{1}_{M}\}. \end{cases}$

- M is the smallest normal subgroup of G with solvable quotient.
- M is perfect (M' = M).

Example. Recall that $Irr_{\{2,5\}'}(S_5) = Lin(S_5)$. The solvable residual of S_5 is A_5 . As $H = S_5$ the first part is trivially satisfied. Note that $Irr_{\{2,5\}'}(A_5) = \{\mathbf{1}_{A_5}, \varphi, \varphi^{(1,2)}\}$.

Fact. Under the equivalent hypotheses of Theorem B, if G is nontrivial then M < G. *Proof.* If M = G, then in both cases $Irr_{\pi'}(G) = \{\mathbf{1}_G\}$ and G = 1 (by Theorem A). 2. CHARACTER DEGREES, FIELDS OF VALUES AND TWO PRIMES

For
$$\chi \in Irr(G)$$
, $\mathbb{Q}(\chi) = \mathbb{Q}(\chi(g) \mid g \in G) \subseteq \mathbb{Q}(e^{2\pi i/|G|})$.
If $\mathbb{Q}(\chi) = \mathbb{Q}$, say χ is rational.
If $\mathbb{Q}(\chi) \subseteq \mathbb{R}$, say χ is real.

Theorem (Burnside)

A group G has even order if, and only if, some $1_G \neq \chi \in Irr(G)$ is real.

Remark. Proof is elementary from orthogonality and divisibility of character degrees.

Theorem (Navarro-Tiep '08)

A group G has even order if, and only if, some $1_G \neq \chi \in Irr(G)$ is rational.

Remark. Unlike the real case, the proof of Navarro-Tiep relies on the Classification of Finite Simple Groups.

R. Gow. If *G* has even order, can we choose a rational $1_G \neq \chi \in Irr(G)$ with odd degree?

Theorem (Navarro-Tiep '08)

G has even order if, and only if, some $\mathbf{1}_G \neq \chi \in \operatorname{Irr}_{2'}(G)$ is rational.

A group G of order divisible by p may not have rational nontrivial characters.

Theorem (Navarro-Tiep '06)

G has order divisible by *p* if, and only if, $\mathbf{1}_G \neq \chi \in \operatorname{Irr}_{p'}(G)$ has values in $\mathbb{Q}(e^{2\pi i/p})$.

Notice $\mathbb{Q} = \mathbb{Q}(e^{2\pi i/2})$.

Question. Assume |G| is divisible by 2 or p, then by Theorem A there is a $1_G \neq \chi \in Irr_{\{2,p\}'}(G)$. Can we always find such a χ with values in \mathbb{Q} or $\mathbb{Q}(e^{2\pi i/p})$?

Theorem C (Giannelli-Hung-Schaeffer Fry-V. '21)

G group and *p* prime.

(|G|, 2p) = 1 if, and only if, some $\mathbf{1}_G \neq \chi \in \operatorname{Irr}_{\{2,p\}'}(G)$ has values in $\mathbb{Q}(e^{2\pi i/p})$.

Question. Assume now |G| is divisible by 2 and p. Can we always find such a χ with values in $\mathbb{Q} \cap \mathbb{Q}(e^{2\pi i/p}) = \mathbb{Q}$?

No! The solvable group A₄ *does* not posses a nontrivial $\{2,3\}'$ -degree rational irreducible character.

Open problem. Classify finite groups G admitting a rational $1_{G} \neq \chi \in Irr_{\{2,p\}'}(G)$.

Theorem D (Giannelli-Hung-Schaeffer Fry-V. '21) *G* solvable group, *p* prime and $H \in \operatorname{Hall}_{\{2,p\}}(G)$. Some $\mathbf{1}_G \neq \chi \in \operatorname{Irr}_{\{2,p\}'}(G)$ is rational if, and only if, H/H' has even order.

Remark. The simple group A_5 *does* posses a nontrivial $\{2,3\}'$ -degree rational irreducible character and $A_4 \in \operatorname{Hall}_{\{2,3\}}(A_5)$.

The irreducible characters in the principal p-block of G

$$\operatorname{Irr}(B_p) = \{ \chi \in \operatorname{Irr}(G) \mid \sum_{g \in G_{p'}} \chi(g) \neq 0 \} \ni \mathbf{1}_G,$$

 $G_{p'} = \{g \in G \mid (o(g), p) = 1\} \subseteq G.$

For a prime q, write $\operatorname{Irr}_{q'}(B_p) = \operatorname{Irr}(B_p) \cap \operatorname{Irr}_{q'}(G)$.

Theorem (Malle-Navarro '21)

G group, *p* prime and $P \in Syl_p(G)$.

 $\operatorname{Irr}_{p'}(B_p) = \operatorname{Irr}(B_p)$ if, and only if, P is abelian.

Remark. This is the principal block case of Brauer's height zero conjecture!

Problem. Can we characterize $Irr_{q'}(B_p) = Irr(B_p)$?

Problem. Can we characterize $Irr_{q'}(B_p) = Irr(B_p)$?

Theorem (Navarro-Wolf '01)

G solvable group.

If $Irr_{q'}(B_p) = Irr(B_p)$ then some $P \in Syl_p(G)$ normalizes some $Q \in Syl_q(G)$.

Remark. The statement above is false in general. For example J_1 with p = 2 and q = 5.

Restricted Problem. Can one characterize $Irr_{q'}(B_p) = Irr(B_p)$ in some cases? We studied the case where q = 2.

Theorem E (Giannelli-Malle-V. '19)

G group and $p \neq 7$ a prime.

 $\operatorname{Irr}_{2'}(B_p) = \operatorname{Irr}(B_p)$ if, and only if, $G/\mathbf{O}_{p'}(G)$ has odd order.

Remark. Under the hypotheses of the above theorem, actually some Sylow p-subgroup of G normalizes a Sylow 2-subgroup of G. (Theorem E extends Navarro-Wolf '01.)

Theorem E (Giannelli-Malle-V. '19)

G group and $p \neq 7$ a prime.

 $\operatorname{Irr}_{2'}(B_p) = \operatorname{Irr}(B_p)$ if, and only if, $G/\mathbf{O}_{p'}(G)$ has odd order.

Remark. Under the hypotheses of the above theorem, actually some Sylow p-subgroup of G normalizes a Sylow 2-subgroup of G. (Theorem E extends Navarro-Wolf '01.)

- Take $Q \in Syl_2(G)$.

- By the Frattini argument $G = \mathbf{O}_{p'}(G)\mathbf{N}_G(Q).$

Theorem E (Giannelli-Malle-V. '19)

G group and $p \neq 7$ a prime.

 $\operatorname{Irr}_{2'}(B_p) = \operatorname{Irr}(B_p)$ if, and only if, $G/\mathbf{O}_{p'}(G)$ has odd order.

Remark. Under the hypotheses of the above theorem, actually some Sylow p-subgroup of G normalizes a Sylow 2-subgroup of G. (Theorem E extends Navarro-Wolf '01.)

- Take $Q \in Syl_2(G)$.
- By the Frattini argument
 G = O_{p'}(G)N_G(Q).
 In particular, some P ∈ Syl_p(G)

- In particular, some $P \in Syl_p(C)$ normalizes Q.

Maybe $Irr_{q'}(B_p) = Irr(B_p)$ is a too weak condition for two primes!

Conjecture (Malle-Navarro '20) $\operatorname{Irr}_{q'}(B_p) = \operatorname{Irr}(B_p)$ and $\operatorname{Irr}_{p'}(B_q) = \operatorname{Irr}(B_q)$ if, and only if, $P \in \operatorname{Syl}_p(G)$ and $Q \in \operatorname{Syl}_q(G)$ centralize each other.

• If p = q then it is the principal block case of Brauer's height zero conjecture.

 (\Leftarrow) Proven by Malle and Navarro.

 (\Rightarrow) Reduced to show that the principal blocks of simple non-abelian groups satisfy the inductive Alperin-McKay condition.

Theorem (Giannelli-Malle-V. '19, Giannelli-Meini '20)

Given two primes p and q, and B_p the principal p-block of A_n ($n \ge 5$). There is some $\chi \in (B_p)$ of degree divisible by q.

In particular, alternating groups satisfy the Malle-Navarro conjecture on principal blocks and two primes.

Conjecture (Malle-Navarro '20)

 $\operatorname{Irr}_{q'}(B_p) = \operatorname{Irr}(B_p)$ and $\operatorname{Irr}_{p'}(B_p) = \operatorname{Irr}(B_p)$ if, and only if, some $P \in \operatorname{Syl}_p(G)$ and $Q \in \operatorname{Syl}_q(G)$ centralize each other.

This conjecture characterizes the existence of nilpotent Hall $\{p, q\}$ -subgroups.

Another recent conjecture on this topic is the following.

Conjecture (Liu-Willems-Xiong-Zhang '20) If $Irr(B_p) \cap Irr(B_p) = \{\mathbf{1}_G\}$ then *G* has nilpotent Hall $\{p, q\}$ -subgroups.

Remark. The authors prove their conjecture holds in general if it holds for almost simple groups.

Thanks for your attention!

